15 июня 2018

В космос со своим принтером

Технологии 3D-печати сейчас все шире применяются в промышленности, как для создания макетов и прототипов, так и для готовых изделий. Ракетно-космическая индустрия — довольно консервативная отрасль, и хотя принтер для печати пластиком уже добрался до Международной космической станции, сможет ли трехмерная печать потеснить традиционные способы обработки материалов? Разбираемся в этом вопросе совместно с НИТУ «МИСиС», партнером этого материала.

 


Источник: N+1 Интернет-издание | Купол, отпечатанный из метеоритного вещества

На Земле

Сопла ракетных двигателей внешне выглядят очень просто — чаще всего как металлический пустотелый конус с плавными обводами. Однако они должны выдерживать крайне высокую температуру и давление, поэтому во многих случаях в ракетных двигателях используют активное охлаждение — сквозь тонкие каналы в стенках сопла непрерывно прокачивается топливо (которое потом попадает в камеру сгорания). Создание ракетных сопел с множеством тонких каналов в стенках, сохраняющих при этом механическую прочность, — нетривиальная производственная задача, которая требует сложного оборудования и много стадий обработки.

Трехмерная печать, возможно, будет идеальной заменой трудоемким манипуляциям, поскольку она позволяет создавать устройства очень сложной формы всего за одну операцию. В 2015 году инженеры NASA решили сэкономить средства налогоплательщиков и напечатать полномасштабное сопло для ракетного двигателя с помощью метода селективного лазерного спекания.

Аддитивные технологии дают космической отрасли те же преимущества, что и в других сферах: это простота, возможность печати изделий любой конфигурации. Особенно это актуально для печати сопла ракетных двигателей - Александр Громов, профессор НИТУ «МИСиС»,
руководитель проекта по разработке технологий трехмерной печати.

Специалистам из лаборатории обработки материалов Центра NASA имени Маршалла потребовалось 10 дней и 18 часов, чтобы напечатать сопло двигателя из специального медного сплава. В процессе работы им пришлось нанести 8255 слоев медного порошка. Зато получившееся сопло могло выдержать температуру почти 3 тысячи градусов Цельсия, поскольку в каналах в его стенках прокачивается охлаждающий газ температурой лишь на 100 кельвинов выше абсолютного нуля.


Источник: N+1 Интернет-издание | Ракетный двигатель, напечатанный специалистами NASA

Печатью дело не ограничилось, совсем недавно, в марте 2018 года, в Центре Маршалла провели огневые испытания двигателя, напечатанного с помощью улучшенной технологии, которая позволила сократить время производства.

Пока государственные космические гиганты только приступают к экспериментам, «частники» уже внедряют аддитивные технологии в серийное производство. Новозеландская компания RocketLab использует трехмерную печать в изготовлении элементов ракетного двигателя Rutherford — для ракеты-носителя Electron.

Новозеландцы печатают камеру сгорания и сопло с рубашкой охлаждения, где должно циркулировать ракетное топливо во время работы двигателя. Двигатель Rutherford испытали сначала на стенде, затем в ходе космического запуска. Первый пуск ракеты сорвался из-за сбоя в системе связи, а второй, в январе 2018 года, прошел успешно.

Однако по меркам больших ракет двигатель RocketLab можно считать карликом, он имеет тягу около 2,5 тонны и массу около 25 килограмм. Чтобы вывести на орбиту полезную нагрузку массой лишь 200 килограммов, на первой ступени ракеты Electron требуется девять таких двигателей.

Несколько металлических 3D-печатных элементов используется в значительно более мощных двигателях Merlin на тяжелой ракете Falcon 9 компании SpaceX. Однако ключевые элементы этого двигателя изготавливают с помощью вполне традиционных методов — фрезеровки, литья под давлением, горячей формовки.

Метод трехмерной печати металлом

Заведующий кафедрой металловедения цветных металлов НИТУ «МИСиС» Алексей Солонин объясняет, что если печать пластиком технически достаточно проста — нужно лишь нагреть пластиковые «чернила» и можно печатать, то для печати изделия из металла требуется тщательно подготовленное сырье.

Подготовка материалов для печати в этом случае может быть достаточно непростой. В первую очередь, частицы порошка для металлической печати должны быть примерно одного размера, без сильного разброса. Сами частицы должны быть по форме близки к сферическим, порошок должен обладать хорошей сыпучестью. От этих качеств порошка в очень большой степени зависит качество конечного изделия, — говорит он.

Наиболее распространенный метод трехмерной печати металлом — метод лазерного спекания — заключается в том, что из контейнера слой за слоем насыпается порошок из частиц размером 40–60 микрон. «Этот слой должен быть очень ровным, поэтому так важно, чтобы частицы были одинакового размера и формы», — отмечает Солонин. Затем лазерный луч «вычерчивает» контур изделия, и те частицы, которые попали под лазерный луч, сплавляются. Затем насыпается следующий слой, и так послойно формируется деталь. В некоторых случаях вместо лазерного луча может использоваться пучок электронов.

Американский стартап Relativity Space пошел дальше всех. Его основатели намерены разработать ракету, полностью напечатанную на 3D-принтере. Речь идет о массовом использовании деталей, созданных по технологии селективного лазерного спекания при помощи специально разработанного 3D-принтера на базе роботов-манипуляторов Kuka. По заверению авторов проекта, им удалось сократить общее число деталей ракеты со 100 тысяч до 1 тысячи, но это не самое захватывающее из их обещаний. Стартаперы намерены создать полностью автономную фабрику ракет и обещают в будущем первыми построить ракету на Марсе.


Источник: N+1 Интернет-издание | Стартап Relativity Space намерен создать безлюдную ракетную фабрику

К настоящему моменту они уже разработали 3D-печатный двигатель Aeon и даже испытали его с помощью специалистов NASA.

В области строительства спутников пока идут отдельные эксперименты по производству деталей с помощью аддитивных технологий. В частности, по заказу Европейского космического агентства строились небольшие параболические антенны, механизмы развертывания солнечных батарей, элементы системы получения изображений, корпус малого спутника стандарта CubeSat.

Трехмерная печать в этом случае позволяет снижать массу аппарата, уменьшает общее количество деталей, открывает новые возможности в конструировании деталей на основе топологической оптимизации, позволяет заменять шлейфы проводов на токопроводящие нити, протянутые прямо через стенки конструкции.


Источник: N+1 Интернет-издание | Элемент механизма раскрытия солнечных батарей, напечатанный на 3D-принтере


Источник: N+1 Интернет-издание | Прототип спутниковой камеры, напечатанный на 3D-принтере


Источник: N+1 Интернет-издание | Спутниковая антенна, напечатанная на 3D-принтере

В космос пока эти изделия не запустили, хотя, возможно, полученные результаты найдут применение в будущих спутниковых платформах.

И в космосе

Пока развитию 3D-печати мешает консервативность производителей космической техники. Ведь чтобы начать использовать новый элемент конструкции, требуется провести его многократные испытания на Земле, затем запустить в космос и по итогам убедиться в прямых выгодах, которые новинка даст по сравнению с аналогами прежних лет. Поэтому пока инженерам кажется проще использовать уже многократно проверенные технологии, устоявшиеся производственные цепочки.

Однако существуют ситуации, в которых невозможно собрать необходимое нам устройство из десятков разнообразных компонентов, произведенных с помощью десятков различных технологий в разных концах страны — например, на борту космической станции. Поэтому соответствующие эксперименты уже проводятся — на борту МКС есть свой 3D-принтер для печати ABS-пластиком. С его помощью астронавты с успехом напечатали храповой ключ, подтвердив принципиальную возможность создавать новые изделия прямо на орбите.

Но практически неизбежным использование 3D-печати станет для будущих межпланетных путешественников, которым не с руки будет просить Землю о доставке необходимого инструмента — просто потому, что на доставку посылки адресату уйдет несколько лет.

Частная компания Deep Space Industries, которая намерена заниматься добычей полезных ископаемых на астероидах, в 2013 году взялась за разработку 3D-принтера, который сможет печатать металлом в невесомости. В качестве сырья DSI предполагала использовать основной материал, из которого состоят металлические астероиды — железо-никелевый сплав. Однако на сегодня все упоминания об этой разработке с сайта DSI удалены.

Другая компания, которая нацелилась на астероиды, — Planetary Resources — также видит будущее в использовании космических ресурсов для орбитального производства. Компания провела эксперимент и напечатала в земной лаборатории небольшую конструкцию, применив в качестве материала измельченный в порошок металлический метеорит.


Источник: N+1 Интернет-издание | Купол, отпечатанный из метеоритного вещества

Российская компания «Анизопринт» разрабатывает технологию 3D-печати из композитов, а в качестве возможной области ее применения рассматривает печать композитных элементов космических аппаратов на орбите. Другой российский стартап, 3D Bioprinting Solutions, планирует провести эксперимент на российском сегменте МКС с биофабрикацией тканей организма. Предполагается, что условия микрогравитации позволят формировать устойчивые трехмерные структуры и полноценные ткани и даже органы, которые невозможно создать в условиях земной гравитации. Пока эксперимент проходит подготовку на Земле, причем сроки затягиваются из-за сложных стандартов согласования частного эксперимента на российском сегменте МКС.

На Земле 3D-принтеры уже справляются не только с небольшими изделиями, но и с целыми домами. Подобный опыт предлагается применить и при создании внеземных поселений или научных баз. В США, России и других странах ведутся разработки и проводятся эксперименты в этом направлении.

Европейская фирма Foster and Partners по заказу ESA провела дизайнерскую работу по проектированию лунной базы, напечатанной из реголита. В качестве подтверждения предлагаемой технологии компания заказала печать одного блока из вулканического базальта при помощи строительного принтера D-Shape.

Профессор Александр Громов отмечает, что 3D-печать будет очень востребована в пилотируемых межпланетных экспедициях, потому что с помощью этой технологии можно изготовить все что угодно.

Трудность лишь в том, что нет принтера, который бы печатал все из всего, или, иначе говоря, из гетероструктурных и гетерогенных материалов, то есть разнородных по структуре и составу, — говорит он.

По его словам, в НИТУ «МИСиС» сейчас реализуется проект разработки такого принтера. Возможно, через некоторое время мы увидим его в работе.

Автор: Виталий Егоров

Рекомендуемые новости